If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+20=123
We move all terms to the left:
3x^2+20-(123)=0
We add all the numbers together, and all the variables
3x^2-103=0
a = 3; b = 0; c = -103;
Δ = b2-4ac
Δ = 02-4·3·(-103)
Δ = 1236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1236}=\sqrt{4*309}=\sqrt{4}*\sqrt{309}=2\sqrt{309}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{309}}{2*3}=\frac{0-2\sqrt{309}}{6} =-\frac{2\sqrt{309}}{6} =-\frac{\sqrt{309}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{309}}{2*3}=\frac{0+2\sqrt{309}}{6} =\frac{2\sqrt{309}}{6} =\frac{\sqrt{309}}{3} $
| |8x−6|−7=3 | | 7x+4-6=14 | | (x/3)=9 | | 1/4(4x-8)=15 | | 3p-1=15-p | | .12v-1=0.095v-0.9 | | 6-10x=26 | | 7(x-2)+1=-34@ | | -7=c | | 4/5x-9=23 | | (2x+8)+(x+10)=180 | | 12=4-2n | | 8.86x+9=78.4996+3x | | 2(3h+2)=4+6h | | -123=3-6(2k+5) | | 100(8x-10)=40(1,140+100x) | | ⦁ 22x3=x52 | | 64°=(48+x) | | 18n+3=8n-37 | | 7.06+1=49.8436+x | | ¾x=60 | | 5t-4-3t=17+2t-11 | | f(-8)=-8^(2)+9(-8)+4 | | 2y+3=4y-7=2y+8 | | 2(5x+4)=12(20x−16) | | z-55=-1 | | 4(x-2)+3=2x+2(-2+x) | | 1/2(10x+2)=3 | | -3(8+3h)=5h | | g2–4g–21=(g–)(g+) | | 3(2x−5)=2(3 | | g2–4g–21= |